

Effect of radiation, endurance on pulsed programming

Avyaya J. Narasimham, Andrew Gonzalez, Michael Han, Jean-Yang Scharlotta

Presented by Avyaya J. Narasimham, Caltech Postdoctoral researcher

Our approach...

Pulsed Program Method

OUTLINE

- Nature of traps: Endurance and Radiation
- Experimental setup
- Pulsed Programming and Pulse width
- Endurance, Radiation and Pulsed programming
- Coupled effect
- Conclusion and future work

INTRODUCTION

Nature of traps: Endurance

Programs-Erase stress traps electrons creating negatively charge traps

Nature of traps: γ -Radiation

Incoming radiation creates electron-hole pairs and induces a hole-traps which are positively charged traps

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

FPGA chip controls

the NAND Flash.

jpl.nasa.gov

FPGA, which is 50 ns

NAND Flash memory structure: Erase and Program operation

Pulsed Programming and Pulse width

- Standard on chip programming uses a voltage ramp for successive pulses (left plot) taking ~220us to complete
- In our pulsed programming, we interrupt the on chip program command after ~20us so the expected program voltage is approx. constant (middle plot)
- Thus the number of pulses here would be significantly higher than on chip program pulses due to lake of voltage ramp (right plot)

Pulsed Programming and Pulse width

A longer pulse-width can program a larger population of bits on a page. Repeating the pulse program operation many times will eventually program the entire page

Opposing effects of radiation and endurance

Radiation exposure made the bit cells on the page more difficult to program, while Program-erase stress made the bit cells on the page easier to program

Coupled effect of Radiation and Endurance

Coupled effect of Radiation and Endurance

The endurance stress gradually shifts the curve for different TID levels. Data retention studies can throw some light on the reliability of the such a block.

Bit distribution and statistical models

Fitting to a Logistic model

a: Slope

b: Inflection point

y: Avg. value

x: Pulsed Program

Fit Parameters and PE Cycles

Slope does not change much in comparison to inflection point

Neutral Trap Model

- Post-Radiation PE cycling is studied largely
- We study Pre-radiation PE cycling which show similar results.
- We believe the trap state location is the key

Figure taken from J. Electrochem. Soc.-1991-Walters-2756-62

Conclusions and Remarks

- Pulsed programming provides a chip level test to evaluate the programming speed and thus the trap states
- Logistic model is an appropriate model to mathematically fit the program pulse data as well as bit distribution data
- Data was successfully retained on a chip for 3 weeks at 100 °C
- Activation energies and physical-parameter correlation of bit distribution is necessary and on-going.

jpl.nasa.gov

Back up slides

Basics of Floating gate device

Large **positive** (**negative**) bias on the control gate **induces** (**extracts**) electrons in (from) the floating gate.

The presence or absence of electrons on the floating gate controls the source-drain current and bit is either programmed "0" state or erased "1"

Storing charge in floating gate or tunneling

A large positive bias bends the barrier towards the gate and the probability of tunneling of electrons increases thus electrons are stored in the floating gate.

